

## Finding Sleep in Multimorbidity: A Systematic Review of Evidence on Effective Treatment Modalities for Insomnia in People Living with Multimorbidity.

Olajumoke Azeezat Ibrahim<sup>1</sup>, Bhautesh Jani<sup>2</sup>

*1. Department of Family Medicine, Ahmadu Bello University Teaching Hospital, Zaria. Nigeria*

*2. Department of General Practice and Primary Care, University of Glasgow. Glasgow. Scotland*

### Corresponding Author

Name: Olajumoke Azeezat Ibrahim

Department of Family Medicine, Ahmadu Bello University Teaching Hospital, Zaria.

[jmkibrahim@yahoo.co.uk](mailto:jmkibrahim@yahoo.co.uk)

### Abstract

**Background:** Comorbid insomnia is a common presenting condition in medical clinics and primary care practice. This is often managed with pharmacotherapy with little success and higher healthcare costs. Despite the high prevalence of insomnia in people living with multimorbidity, its management remains challenging for primary care physicians as many of these patients have multiple symptoms, multiple comorbid conditions and are taking multiple medications. This study set out to systematically review the evidence on effective treatment modalities for comorbid insomnia with a view to determine what interventions ultimately translate to better therapeutic outcomes.

**Methods:** Published RCT studies were identified via medical and allied health online databases EMBASE, OVID, MEDLINE, CINAHL, Cochrane database and PubMed. Study selection and extraction was obtained from 32 randomised control trials were systematically extracted, collated and analysed. Those included were studies that examined the effects of interventions for comorbid insomnia in adults while studies without clear outcomes were excluded. The interventions included pharmacological and non- pharmacological methods while the outcome variables were subjective and objective sleep parameters.

**Results:** A total of 4,578 participants were reviewed (from 32 RCTs) with a mean age of 48.72 years. There was paucity of data from low-income regions, especially Africa. In developed countries, pharmacotherapy, cognitive behavioural therapy (CBT-I) and herbal therapy were effective in treating comorbid insomnia with moderate to large effect sizes.

**Conclusion:** While pharmacotherapy and CBT-I have both been found to be efficacious in managing comorbid insomnia, we advocate for more research in low- and middle- income countries.

**Keywords:** Insomnia, sleep, multimorbidity, comorbid insomnia, systematic review.

### Introduction

Managing insomnia (also known as insomnia disorder) is a major challenge for patients, primary care physicians, health care providers, care givers and policy makers in medical practice.<sup>1</sup> It is said that about 1/3<sup>rd</sup> of patients in primary care present with sleep problems as part of their complaints and only a few of these will have satisfactory treatment or amelioration of symptoms.<sup>1,2</sup> About 25% of the adult population will present with sleep problems in their lifetime and 10-15% of these people will have symptoms of insomnia.<sup>1</sup> However, the prevalence of insomnia varies due to varying definitions.<sup>1,2</sup> According to a population based survey by Chung et al<sup>3</sup> in China, they defined the prevalence of insomnia based on the International Classification of Sleep Disorders (ICSD-2) as 15.1%, International Classification of Diseases (ICD-10, ICD-11, World Health Organization) as 4.7% and the prevalence based on the Diagnostic and Statistical Manual (DSM 1V and V) as 22.1%. Whereas, according to the American Insomnia Survey,<sup>4,5</sup> the prevalence of insomnia in the general population was estimated to be between 22.1% (DSM-IV TR) and 3.9% (ICD-10). Managing insomnia is costly; in the United States of America (U.S.A), the annual average cost of managing insomnia was estimated to be 1254 US Dollars per patient.<sup>6</sup> The indirect cost due to loss of work

productivity was 1554 USD.<sup>6</sup>

Sleep problems are common in primary care but are often overlooked. The majority of sleep complaints occur within the context of medical and mental health multimorbidity.<sup>2</sup> According to Chung et al,<sup>3</sup> a total of 46%- 80% of patients who complain of insomnia have co-morbid medical or psychiatric disorders. Also, multimorbidity is a risk factor for insomnia, with a 7- fold increase in the odds.<sup>4</sup> Insomnia is an heterogeneous complaint that may involve difficulties falling asleep (initial or sleep onset insomnia), trouble staying asleep with prolonged nocturnal awakenings (middle or maintenance insomnia) or early morning awakening with inability to resume sleep, causing dissatisfaction with daytime function.<sup>5</sup> The hallmark of the DSM-5 and ICSD-3 criteria for diagnosis is the emphasis on daytime functioning, and the persistence of symptoms for at least one month.<sup>5</sup> The DSM-5 also defines persistent insomnia ( chronic insomnia in ICSD-3) as when symptoms persists for more than three months, and suggests CBT-I as a treatment modality. Insomnia is still under- diagnosed in primary care settings and often remains untreated even when the medical conditions have been effectively managed.<sup>6</sup>

The goal of the study was to determine the effective interventions for the management of insomnia in adult

patients living with multimorbidity, in order to develop management protocols for insomnia co-existing with other chronic medical conditions.

### Research Methods

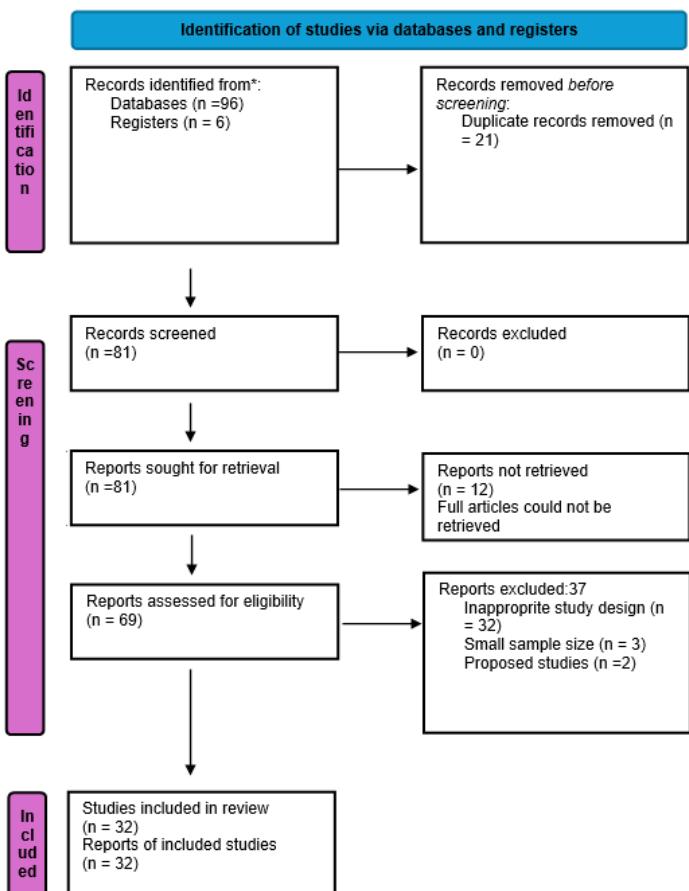
A systematic review was carried out to answer the research question using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines.<sup>7</sup> The review included all randomized controlled trials with population of adult patients (> 18 years) who were living with multimorbidity and insomnia. The diagnosis of insomnia was based on either DSM V or ICSD criteria,<sup>8-10</sup> the use of sleep diaries and/or actigraphy, whereas multimorbidity was defined as the presence of 2 or more long-term health conditions.

The interventions were pharmacological and non-pharmacological therapies for insomnia. The comparator groups had treatment as usual (TAU) or were put on a waiting list for the treatment. The primary outcome variables were changes in sleep parameters as measured by the Insomnia Severity Index or the Pittsburgh Sleep Quality Index while secondary outcomes were depression and anxiety scores, pain scores and other symptom scores associated with the comorbid condition.

### Selection Criteria:

The review included all randomized controlled trials from 1996 to 2021. The studies were those involving treatment of insomnia in the context of multimorbidity (insomnia plus one or more chronic medical condition) in adults 18 years and above. The authors excluded studies on primary insomnia, those with very small sample size, and grey literature.

### Search Strategy:


Published studies were identified via medical and allied health online databases, EMBASE, OVID, MEDLINE, CINAHL, Cochrane database and PubMed. Hand searching was also done from identified references using google scholar.

The required data were systematically extracted and recorded in a data collection form and meticulously reviewed by the authors. The studies included in the review were described, the information collated, narrated and organized into themes. The findings from the studies were critically appraised and analyzed. The search terms used were multimorbidity/comorbidity, comorbid insomnia/secondary insomnia, treatment/management. The search was from 1996 till 2021, and only English articles were considered.

### Results:

The formal search strategy identified a total of 102 articles for review. After removal of duplicates, the number of articles reduced to 81. Out of the 81 identified articles, 12 did not have their full texts available. A total of 69 full text articles were screened for eligibility and only 32 met the inclusion criteria; (See Figure 1). A total of 37 studies were excluded. The main reason for exclusion was they had an inappropriate study

design (not randomized control trials or clinical trials). Also, three studies were excluded due to their very small sample size of less than ten participants as this would have reduced the power of the said studies and this was an exclusion criterion.



**Figure 1: PRISMA Flow Chart of Study**

### Study Characteristics

Table I shows the descriptive data of the 32 studies included in the systematic review. The total sample size was 4578 (range of 10-1385 patients). Majority of the patients were middle-aged with an average age of 48.72 years from the 27 studies that reported a mean age. The participants were predominantly females (70%) and most of the studies in the review were carried out in economically affluent countries. There was a dearth of studies from low- and middle-income countries as there was no study from Africa, just three studies from Asia, and one study from the Middle East. Only 10 studies reported the socio-economic status of participants, where an average of 49.5% participants were employed.

| No. | Study                                     | Country | Mean/ median age in yrs. (SD) | Gender (% females) | Socio-economic status     |
|-----|-------------------------------------------|---------|-------------------------------|--------------------|---------------------------|
| 1.  | Contreneo et al, 2002 <sup>11</sup>       | Italy   | 78.9                          | 70%                | Not reported              |
| 2.  | Mc Curry et al 2021 <sup>12</sup>         | USA     | 70.2 (6.8)                    | 74.6%              | Not reported              |
| 3.  | Cheng et al, 2019 <sup>13</sup>           | USA     | 44.5 (15.8)                   | 79%                | 30%                       |
| 4.  | Von Koff et al, 2012 <sup>14</sup>        | USA     |                               | Not reported       | Not reported              |
| 5.  | Smitherman et al 2016 <sup>15</sup>       | USA     | 30.8                          | 90.3%              | Not reported              |
| 6.  | Jasson- Frojmark et al 2012 <sup>16</sup> | Sweden  | 57.8(6.6)                     | 58.9%              | 96.7% employed or student |
| 7.  | Pollack et al <sup>17</sup>               | USA     | 40                            | 66%                | Not reported              |

|                                                |           |              |              |                                           |
|------------------------------------------------|-----------|--------------|--------------|-------------------------------------------|
| 8. Casault et al, 2015 <sup>18</sup>           | Canada    | Not reported | 95%          | 66% at least college or university degree |
| 9. Manber et al, 2008 <sup>19</sup>            | Stanford  | 35(18)       | 61%          | Not reported                              |
| 10. Alessi et al 2021 <sup>20</sup>            | Italy     | Not reported | Not reported | Not reported                              |
| 11. Tanaka et al, 2015 <sup>21</sup>           | Japan     | 69.7(8.1)    | 78%          | 73% had good economic situation           |
| 12. Baron et al, 2011 <sup>22</sup>            | USA       | 48.6 (9.6)   | 78%          | 27% employed                              |
| 13. Sweetman et al, 2019 <sup>23</sup>         | Australia | 58.2(9.9)    | 45%          | Not reported                              |
| 14. Tang et al, 2021 <sup>24</sup>             | USA       | 66.7(5.2)    | 87%          | Not reported                              |
| 15. Roth et al, 2018 <sup>25</sup>             | USA       | 52.1 (9.5)   | 86.9%        | Not reported                              |
| 16. Ranjbar et al, 2018 <sup>26</sup>          | Iran      | 38.6(12.5)   | Not reported | Not reported                              |
| 17. Javaheri et al, 2019 <sup>27</sup>         | USA       | 71.6 (9.5)   | 25%          | 79.9% had at least college education      |
| 18. Mc Crae et al, 2019 <sup>28</sup>          | USA       | 54.1(11.0)   | 97%          | 37.1% employed                            |
| 19. Sadler et al, 2018 <sup>29</sup>           | Australia | 74.7(7.1)    | 55.6%        | 79.1% on pension                          |
| 20. Norrel Clarke et al, 2015 <sup>30</sup>    | Sweden    | 49.3 (12.5)  | Not reported | 68% employed or student                   |
| 21. Hsu et al, 2015 <sup>31</sup>              | Taiwan    | 52.4         | 60.6%        | 39.4% employed                            |
| 22. Ashworth et al, 2015 <sup>32</sup>         | USA       | Not reported | 61%          | Not reported                              |
| 23. Garland et al, 2016 <sup>33</sup>          | Canada    | 58.9(11.08)  | 72%          | 48% employed                              |
| 24. Wagley et al, 2013 <sup>34</sup>           | USA       | 43.6         | 70%          | Not reported                              |
| 25. Vitello et al 2009 <sup>35</sup>           | USA       | Not reported | Not reported | Not reported                              |
| 26. Jasson- Frojmark et al, 2021 <sup>36</sup> | Sweden    | 57.8         | 62.7%        | 96.7% employed or student                 |
| 27. Latif et al, 2018 <sup>37</sup>            | Norway    | 36.4(8.8)    | 76.3%        | Not reported                              |
| 28. Redeker et al, 2013 <sup>38</sup>          | USA       | 59.2(14.8)   | 52.1%        | Not reported                              |
| 29. Taylor et al, 2015 <sup>39</sup>           | USA       | 50.1(13.1)   | 91%          | 56.5% had at least high school education  |
| 30. Okajima et al, 2013 <sup>40</sup>          | Japan     | 45.5(15.5)   | 66.7%        | Not reported                              |
| 31. Epsie et al, 2008 <sup>41</sup>            | UK        | 61(10.5)     | 68.7%        | 38% employed                              |
| 32. Savard et al, 2005 <sup>42</sup>           | Canada    | 58.8(7.8)    | Not reported | 44% employed                              |

### Pattern of Multimorbidity

Multimorbidity was reported as a combination of two conditions in 26 studies, a combination of three conditions in two studies and a combination of four conditions in a study. (Table II).

**Table II: Pattern of multimorbidity in the systematic**

| Insomnia + Psychiatric conditions                              | Insomnia + Chronic medical conditions           | Insomnia + physical Disability                      | Insomnia + Cancer                        | Insomnia + Mixed disorders                             |
|----------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------|------------------------------------------|--------------------------------------------------------|
| Insomnia+depression 6,13,29,30-32,34,40                        | Insomnia+ osteoarthritis 12,14,24,35            | Insomnia+ hearing impairment <sup>16</sup>          | Insomnia+ breast cancer <sup>42</sup>    | Insomnia+ depression+ multiple sclerosis <sup>22</sup> |
| Insomnia+ generalized anxiety disorder <sup>21,36</sup>        | Insomnia+ chronic headache <sup>15</sup>        |                                                     | Insomnia+ mixed cancers <sup>18,41</sup> |                                                        |
| Insomnia+ anxiety+ depression <sup>26</sup>                    | Insomnia+ coronary artery disease <sup>27</sup> |                                                     |                                          |                                                        |
| Insomnia+mixed psychiatric disorders <sup>39</sup>             | Insomnia+ fibromyalgia <sup>28</sup>            |                                                     | Insomnia+ heart failure <sup>38</sup>    |                                                        |
| Insomnia+ opioid dependence+ anxiety+ depression <sup>39</sup> |                                                 | Insomnia+ hypertension+ diabetes <sup>11</sup>      |                                          |                                                        |
|                                                                |                                                 | Insomnia+ rheumatoid arthritis <sup>25</sup>        |                                          |                                                        |
|                                                                |                                                 | Insomnia+ obstructive sleep apnoea <sup>20,23</sup> |                                          |                                                        |

### Pharmacological Treatment of Comorbid Insomnia

A total of five randomized control trials<sup>11,17,25,26,31</sup> (table III) examined the effectiveness of pharmacological agents in treatment of comorbid insomnia: Zolpidem, escitalopram with add-on ezopiclone, 3mg eszopiclone nocte, extended-release naltrexone and the herb, Melissa officinalis with Nepta menthoidea. There was an increase in the sleep hours and quality of sleep as compared to 'treatment- as- usual' when

10mg zolpidem was used in the management of insomnia/hypertension/diabetes multimorbidity. The effect size and level of statistical significance was however not stated.<sup>11</sup> The use of 10mg Escitalopram oxalate with 3mg eszopiclone for insomnia/ generalized anxiety disorder multimorbidity showed a significant improvement in sleep latency when compared with the control ( $d= -25$ minutes versus -11minutes),  $p< 0.001$ .<sup>17</sup> There was also a significant increase in total sleep time ( $d= 61$  minutes versus 35minutes,  $p< 0.001$ ) and a reduction in the anxiety component of the Hamilton Depression Scale ( $d= -11.96$  versus -10.80,  $p= 0.007$ ).

**Table III: Effectiveness of Pharmacological Treatment of Comorbid Insomnia.**

| Study                             | Setting  | Multimorbidity                                      | Intervention                                                       | Control                                                                          | Primary outcome measure/ outcome                                                                                                                                                                                                                                                                        | Secondary outcome measure/ outcome                                                                                                          |
|-----------------------------------|----------|-----------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Contre neo et al <sup>11</sup> | hospital | Insomnia + Hypertension + Diabetes                  | 10mg Zolpidem nocte                                                | Treatment as usual                                                               | Sleep diary: increase in sleep hours and quality                                                                                                                                                                                                                                                        | Not reported                                                                                                                                |
| 2. Pollack et al <sup>17</sup>    | hospital | Insomnia + GAD                                      | 10mg Escitalopram + 3mg eszopiclone x 8 weeks                      | 10mg Escitalopram + placebo                                                      | Sleep Latency: Reduced SL (-25 vs -11 minutes)<br>$p< 0.001$                                                                                                                                                                                                                                            | TST increased (61 mins. Vs 35 mins.)<br>$P< 0.001$<br>HAM-A Score reduced (-11.96 vs- 10.8)<br>$P=0.007$                                    |
| 3. Roth et al <sup>21</sup>       | hospital | Insomnia + Rheumatoid arthritis                     | 3mg eszopiclone nocte x 4 weeks                                    | placebo                                                                          | ISI: significant reduction in ISI score ( $d= 1.30$ vs 0.43)<br>$P< 0.001$<br>WASO: Reduced WASO (20 mins. Vs 40 mins.)<br>$P< 0.001$<br>SL: Reduced SL (27.0 VS 43.8min.)<br>$P= 0.003$<br>TST: Increase in TST (402 VS 364.7 mins.)<br>$P< 0.001$<br>Improved sleep quality (7.5vs 5.9)<br>$P< 0.001$ | ASES: Improved ASES scores (0.61vs 0.17)<br>$P= 0.05$<br>SF-36: Improvement in role physical and bodily pain<br>$P< 0.05$                   |
| 4. Ranjbar et al <sup>25</sup>    | hospital | Insomnia + Anxiety + depression                     | Melissa officinalis 1000mg+ Nepeta menthoidea 400mg                | placebo                                                                          | ISI: $d= -5.39$<br>$P= 0.08$                                                                                                                                                                                                                                                                            | BDI: $d= -9.03$<br>$P= 0.05$<br>BAI: $d= -6.35$<br>$p< 0.001$<br>Depression: Effect size= -0.12<br>Anxiety: Effect size= -0.14<br>$p> 0.05$ |
| 5. Latif et al <sup>17</sup>      | hospital | Insomnia + Opioid dependence + Depression + anxiety | Extended- release Naltrexone hydrochloride 380mg IM every 4 weeks. | 4- 24mg (target dose 10mg)<br>daily dose of oral combined Buprenorphine-Naloxone | ISI: Effect size= -0.32<br>$P= 0.008$                                                                                                                                                                                                                                                                   | SF-36: Effect size= -0.12<br>Depression: Effect size= -0.14<br>$p> 0.05$                                                                    |

ISI- Insomnia Severity Index; SL-Sleep Latency; TST- Total Sleep Time; WASO- Wake up After Sleep Onset; HAM- Hamilton Anxiety Scale; ASES- Arthritis Self Efficacy Scale; SF-36- Short-Form 36 of Health- related Quality of life Questionnaire; BDI- Beck's Depression Inventory; BAI- Beck's Anxiety Inventory; p- p value; d- within group difference.

### Non- pharmacological Management of Co-morbid Insomnia

#### Audio-visual stimulation

Tang et al<sup>24</sup> reported that the use of audio- visual stimulation in the management of insomnia/ osteoarthritis co- morbidity showed no statistically significant difference in sleep parameters, pain and depression when compared to a placebo (table IV). There was however some improvement from baseline to follow up in both groups.

**Table IV: Effect of Audiovisual Stimulation in the Management of Co-morbid Insomnia**

| Study/multimorbidity     | setting  | intervention                                    | control | Primary measure/ result |       | Secondary outcome measure/result |   |
|--------------------------|----------|-------------------------------------------------|---------|-------------------------|-------|----------------------------------|---|
|                          |          |                                                 |         | Cohen d                 | p     | Cohen d                          | p |
| Tang et al <sup>24</sup> | Hospital | 30- minute delta wave- audio-visual stimulation | placebo | ISI 0.41                | 0.659 | BPI 0.41                         |   |
|                          |          |                                                 |         | PSQI 0.60               | 0.314 | 0.597                            |   |
|                          |          |                                                 |         | SOL 1.35                | 0.131 | PHQ 0.60                         |   |
|                          |          |                                                 |         | WASO 0.69               | 0.192 | 0.701                            |   |
|                          |          |                                                 |         | TST -0.15               | 0.066 |                                  |   |
|                          |          |                                                 |         | SE -1.39                | 0.145 |                                  |   |

ISI- Insomnia Severity Index; PSQI-Pittsburgh Sleep Quality Index, SOL-Sleep Onset Latency; TST- Total Sleep Time; WASO- Wake up After Sleep Onset, SE- Sleep Efficiency- Brief Pain inventory, PHQ- Patient Health Questionnaire, p- p value; d- within group difference.

#### Cognitive Behavioural Therapy

A total of N=26 studies reported the effectiveness of Cognitive Behavioural Therapy for insomnia (CBT-i). These were administered as physical or face-to-face CBT-I (individually or in groups), Remote CBT-I (via telephone or internet- based) or a combination of several modalities of administering CBT-i. These interventions produced low to moderate effect sizes in sleep parameters. (See tables V- VII)

**Table Va: Effect of Face- Face CBT-I on Comorbid Insomnia**

| Study                               | Setting    | Intervention                                                      | Control                                 | Primary outcome |        | Secondary outcome |        |
|-------------------------------------|------------|-------------------------------------------------------------------|-----------------------------------------|-----------------|--------|-------------------|--------|
|                                     |            |                                                                   |                                         | D               | P      | D                 | P      |
| Von Korff et al <sup>14</sup>       | population | 6 sessions of CBT-PI and CBT-P alone                              | Education only                          | ISI 1.3         | <0.001 | AIMS 0.7          | <0.001 |
| Smitherman et al <sup>15</sup>      | hospital   | 30 minute bi- weekly CBT-I sessions                               | Lifestyle modification                  | D 1.06          | 0.883  | D 0.9             | 0.009  |
| Jasson Froimark et al <sup>16</sup> | hospital   | 10- weekly individual face-face therapy                           | TAU                                     | D 2.7           | <0.001 | D 0.001           |        |
| Alessi et al <sup>20</sup>          | hospital   | 5 sessions of 5- weekly CBT-I+ PAP adherence                      | 5 sessions of 5- weekly sleep education | D 0.82          | <0.001 | D 0.81            | <0.001 |
| Sweetman et al <sup>21</sup>        | hospital   | 4- weekly, 45- minute individual or small group sessions of CBT-I | TAU                                     | D 0.6           | 0.497  | D 0.7             | <0.001 |
| McCrae et al <sup>22</sup>          | hospital   | 8 sessions of individual CBT-I and CBT-P                          | Wait list                               | D 0.86          | 0.26   | D 0.39            | 0.059  |
| Sadler et al <sup>23</sup>          | hospital   | Group or individual CBT-I or CBT-I plus mood strategies           | psychoeducation                         | D 1.09          | 0.50   | D 0.51            | 0.007  |

ISI- Insomnia Severity Index; PSQI- Pittsburgh Sleep Quality Index; AIMS- Arthritis Impact Measurement Scale; HIT 6- Headache Impact Test; PHQ- Patient's Health Questionnaire; GAD- Generalized Anxiety Disorder; SE- Sleep Efficiency; SOL- Sleep Onset Latency; TST- Total Sleep Time; WASO- Wake After Sleep Onset; EMW- Early Morning Wakening; DBAS- Dysfunctional Beliefs About Sleep; TIB- Time in Bed; PDI- Pain Disability Index; BDI- Beck's Depression Inventory; GDS- Geriatric Depression Scale; MBSR- Mind Based Stress Reduction program; SLAT- Sleep Latency; MPQ- Mc Gill Pain Questionnaire; SF- Pain- Pain component of Short Form- 36 Questionnaire; EMA- Early Morning

Awakening; WSAS- Work and Social Adjustment Scale; PSWQ- Penn State Worry Questionnaire; BBQ- Brunnsviken Brief Quality of Life; HADS-Hospital Anxiety and depression scale (anxiety component); HADS-D - Hospital Anxiety and Depression Scale Depression component; CBT-i- cognitive behavioural therapy for insomnia; ESS- Epworth Sleepiness Scale; FOSQ- Functional Outcomes of Sleep Questionnaire; AIS-Athens Insomnia Scale; SDS-Self-rating Depression Scale.

**Table Vb: Effect of Face- Face CBT-I on Comorbid Insomnia Contd.**

| Study                              | Setting  | Intervention                                         | Control                           | Primary Outcome     |                   | Secondary Outcome |                       |
|------------------------------------|----------|------------------------------------------------------|-----------------------------------|---------------------|-------------------|-------------------|-----------------------|
|                                    |          |                                                      |                                   | D                   | P                 | D                 | P                     |
| Norell- Clarke et al <sup>20</sup> | hospital | 4 bi-weekly sessions of group CBT-I                  | Group relaxation training         | P ISI 0.79 <0.01    |                   | P SOL 0.42 0.78   |                       |
|                                    |          |                                                      |                                   | P BDI 0.31 0.014    |                   | P WASO 1.06 0.002 |                       |
|                                    |          |                                                      |                                   | P EMW 0.850 0.08    |                   | P TST 0.8 0.190   |                       |
|                                    |          |                                                      |                                   | P SQ 0.53 0.008     |                   | P D               |                       |
| Hsu et al <sup>21</sup>            | hospital | Weekly 90- minute group CBT-I for 6 weeks            | Health education                  | D PSQI -3 0.58      | P                 | P DBAS. -27 0.307 |                       |
| Ashworth et al <sup>22</sup>       | hospital | 4 sessions of individual CBT-I                       | Self- help CBT-I                  | D ISI 3.65 0.001    | P PSQI 2.53 0.001 | P Not reported    |                       |
| Garland et al <sup>23</sup>        | hospital | Weekly 90- minute group CBT-I                        | 90- minute group MBSR counselling | D ISI 1.65 0.001    | P PSQI 2.53 0.001 | P SOL 1.30 0.001  | P WASO 1.41 0.073     |
| Okajima et al <sup>24</sup>        | hospital | 6 bi- weekly individual CBT-I + behavioural analysis | TAU                               | D PSQI 1.25 <0.01   | P SQ 0.75 <0.01   | P AIDS 0.92 <0.01 | P SDS. 0.70 <0.01     |
| Epsie et al <sup>25</sup>          | hospital | 5- weekly, 50- minute group CBT-I                    | TAU                               | D HADS- A 0.57 0.01 | P SOL -0.86 <0.01 | P TST 0.27 0.001  | P HADS- D -0.54 0.004 |
| Savard et al <sup>26</sup>         | hospital | 8- weekly group CBT-I                                | Waiting list                      | D SE 1.09 0.001     | P ISI 3.55 <0.05  | P SE 1.09 0.001   | P Anxiety 11.10 <0.05 |
|                                    |          |                                                      |                                   | D TST 2.75 <0.05    | P QOL 15.63       | P                 |                       |

**Table VI: Effect of Remote CBT-I on Co- morbid insomnia**

| Study                        | setting    | Intervention                                                                                       | Control                                                           | Primary outcome measure/ outcome |                       | Secondary outcome measure/ outcome |                |
|------------------------------|------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------|-----------------------|------------------------------------|----------------|
|                              |            |                                                                                                    |                                                                   | d                                | p                     | d                                  | p              |
| Mc Curry et al <sup>27</sup> | population | Six sessions of telephone- delivered CBT- I over eight weeks                                       | Telephone- delivered CBT- I 'education only on attention control' | d ISI 0.30 0.05                  | p BPI 0.31. PHQ8 0.30 |                                    |                |
| Baron et al <sup>28</sup>    | hospital   | Weekly- administered CBT-I for 16 weeks                                                            | Telephone- supportive emotion- focused therapy                    | d ISI -0.23 NS                   | p D 0.05 <0.01        | D Depression                       | P              |
| Cheng et al <sup>29</sup>    | hospital   | Weekly sessions of digital CBT-I ( emails. Sleepio <sup>®</sup> program via internet) over 6 weeks | Online sleep education via emails.                                | d ISI -4.4 <0.01                 | p QIDS 0.64 <0.001    | D QIDS                             | P              |
| Javaheri et al <sup>30</sup> | hospital   | Web- based CBT-I + general sleep education                                                         | General sleep education                                           | d ISI 0.56 0.1                   | p PHQ8 0.39 0.2       | D SBP 0.22 0.5                     | P DBP 0.25 0.4 |
|                              |            |                                                                                                    |                                                                   | d ESS 0.30 0.7                   | p PGH 0.22 0.5        | D PPH 0.67 0.07                    | P              |

QIDS- Quick Inventory of Depression Symptomatology; CHD-Coronary Artery Disease; SBP- Systolic Blood pressure; DBP- Diastolic Blood Pressure; PGH- Perceived General Health; PPH- Perceived Personal Health; ISI- Insomnia Severity Index; BPI- Brief Pain Inventory; PHQ- Patient's Health Questionnaire 8; ESS- Epworth Sleepiness Scale; d= within group difference; D= between group

difference,  $p = p$  value.

**Table VII: Effect of Mixed Methods CBT-I on Comorbid Insomnia**

| Study                       | setting   | intervention                                                                                                | control            | Primary measure/ outcome                                                                                                             | outcome                                                          | Secondary outcome measure/ outcome                                                                               |
|-----------------------------|-----------|-------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Casault et al <sup>18</sup> | hospital  | Minimal self- help CBT-I offered in bibliography format + three brief phone consultations.                  | Treatment as usual | D<br>ISI<br>-1.2 <0.001<br>SOL<br>-0.46 <0.01<br>WASO<br>-0.46 < 0.05<br>TST<br>0.77 <0.01<br>SE<br>1.25 <0.001                      | p<br>0.60 <0.001<br>HADS-A<br>0.7 <0.001<br>HADS-D<br>0.56 <0.05 | D<br>MFI                                                                                                         |
| Tanaka et al <sup>21</sup>  | community | One 60- minute group session, one 45- minute individual session + two follow up telephone sessions of CBT-I | Wait list          | D<br>PSQI<br>1.71                                                                                                                    | p<br>0.16                                                        | D<br>GDS SF<br>1.83 <0.01                                                                                        |
| Wagley et al <sup>34</sup>  | hospital  | Two CBT-I sessions consisting of one 60- minute in-person session and a follow up telephone session.        | Wait list          | D<br>PSQI<br>1.62                                                                                                                    | p<br>0.216                                                       | No secondary outcome                                                                                             |
| Redeker et al <sup>38</sup> | hospital  | Bi- weekly group CBT-I + telephone calls                                                                    | Attention control  | D<br>ISI<br>0.65<br>SL<br>0.33<br>GSQ<br>0.46<br>Sleep duration<br>0.15<br>Time in bed<br>0.30<br>Sleep efficiency<br>0.38<br>D<br>p | P<br>0.03<br>0.35<br>0.14<br>0.61<br>0.31<br>0.21                | D<br>Fatigue<br>0.64<br>Sleepiness<br>0.06<br>Depression<br>0.06<br>Anxiety<br>0.12<br>Physical function<br>0.25 |
| Taylor et al <sup>39</sup>  | hospital  | Five sessions of individual CBT-I + follow up phone call                                                    | Treatment as usual | D<br>ISI<br>1.05 >0.05<br>SOL<br>0.80 >0.05<br>TST<br>0.89 >0.05<br>WASO<br>0.09 >0.05<br>SE 1.37                                    | p<br>0 > 0.05<br>0 > 0.05<br>-1 > 0.05<br>SF-36<br>1 > 0.05      | D<br>PHQ9<br>GAD7<br>SF-36<br>P                                                                                  |

HADS-A – Anxiety aspect of Hospital Anxiety and Depression Scale; HADS- D- Depression aspect of Hospital Anxiety and Depression Scale; GSQ- Global Sleep Quality; ISI- Insomnia Severity Index; PSQI- Pittsburgh Sleep Quality Index; SOL- Sleep Onset Latency; WASO- Wake up After Sleep Onset; TST- Total Sleep Time; SE- Sleep Efficiency; GDS- Geriatric Depression Scale Short Form; PHQ- 9- patient Health Questionnaire 9; MFI- Multidimensional Fatigue Inventory; SF-36- Short form 36 of Health Related Quality of L

### Risk of Bias Assessment

This systematic review considered whether the conclusions made by the included studies were reliable and valid based on the methodological quality of the summarised research. Therefore, all included studies were appraised by using the Cochrane Collaboration's tool for assessing risk of bias. This involves appraising bias in selection, performance, detection, attrition and reporting domains. In each domain, studies were given a rating of low, high or unclear risk.

A total of 15 studies<sup>12-21,26,28,29,31,33,16, 22-25, 30,32,34,35,37-39,41,42</sup> included in the review were judged to have a low risk of bias, while 14 studies<sup>16, 22-25, 30,32,34,35,37-39,41,42</sup> had a medium risk. For these studies who were found to have a medium risk of bias, the factors which increased their bias risk were: no allocation concealment, the participants were not blinded and carers and the people delivering the interventions were aware of which group received what treatment. Only three studies<sup>11,27,40</sup> had an adjudged high risk of bias. The study by Contreneo et al<sup>11</sup> was a clinical trial with no randomization, blinding or allocation concealment. In addition, missing data were not accounted for and information was not provided regarding the process of data analysis.

While in the study by Javaheri et al,<sup>27</sup> no information was provided regarding randomization, allocation concealment, blinding and the process of analysis. Also, in the study by Okajima et al,<sup>40</sup> there was no randomization, allocation concealment or blinding.

### Discussion

It was observed from this review that majority of the studies were hospital- based studies from high- income countries. There was a paucity of studies from low- and middle- income studies and most especially, there was no study from Africa. This emphasizes the need for research in these resource poor regions where the burden of disease, and multimorbidity is high and resources for healthcare is abysmally scarce.

For the studies that provided data on the mean age of participants, a pooled average age 48.76 years was obtained. This agrees with the study by Linnet et al<sup>43</sup> where it was found that the prevalence of multimorbidity begins to peak at the age bracket (40-49) years and steadily increases with age. It was also observed that the studies that reported older mean ages were associated with medical conditions such as osteoarthritis,<sup>12,24</sup> coronary heart disease<sup>27</sup> and depression.<sup>21,29</sup> Although Contreneo et al also reported a mean age of 78.9 years for insomnia/ hypertension/diabetes comorbidity, the study included only participants greater than 75 years.<sup>11</sup> It was observed that in more than half of the study participants (2,528) had insomnia comorbid with a psychiatric condition. This fits the epidemiology of comorbid insomnia as it is commonly associated with psychiatric conditions.<sup>44</sup>

In this study, the primary outcome variables were the subjective sleep parameters using the self- reporting insomnia severity index and Pittsburgh sleep quality index. Objective sleep parameters such as SOL, TST, WASO, SE% and DBAS recorded by actigraphy and polysomnography were also included. The secondary outcomes varied widely due to the heterogenous combinations of diseases in the review. The outcome measures were tools for depression and anxiety (PHQ-9, HADS, HAM, BDI, GDS, QIDS, SDS), pain (BPI, MPQ), loss of function (MFI, ASES, FOSQ) and quality of life (SF-36, PGH,

PPH, MBSR, WSAS, BBQ).

Also, in this review, we found that pharmacological management of comorbid insomnia significantly increased sleep hours and quality in the various combinations of comorbid insomnia reviewed.<sup>11,17,25,26,37</sup> Hypnotics still remain one of the most commonly used drugs for insomnia, although their safety and side effects are questionable.<sup>43</sup> The antidepressants have the dual advantage of being sedating, and acting as antidepressants or anxiolytics.<sup>44</sup> In this study, CBT-I, delivered face-to-face or remotely, was found to be an effective treatment modality for comorbid insomnia with clinically meaningful effect sizes. A combination of both face-to-face and remote methods however produced mixed results with no added advantage. This is in keeping with more homogenous studies that have shown CBT-I to be effective in the management of comorbid insomnia and enhancement of one method with another may not produce a significant difference.<sup>44-46</sup> However, Lancee and colleagues found that motivational support via e-mails improved the effectiveness of internet-delivered self-help treatment for insomnia.<sup>47</sup>

According to the American Academy of Sleep Medicine and the European Sleep Research Society, CBT-I is recommended as first line management of insomnia.<sup>48</sup> Although pharmacologic treatments such as benzodiazepine receptor agonists and low dose antidepressants are commonly used in primary care, randomized control trials comparing medications for insomnia and CBT-I indicate that CBT-I yields more durable sleep improvement over the course of time with fewer side effects.<sup>48,49</sup> A study by Natsky et al also found that in addition to the proven efficacy of CBT-I, it was also more cost effective when compared to pharmacotherapy or no treatment at all.<sup>50</sup> According to them however, this was a conservative submission due to the limited studies included in their review.<sup>50</sup>

Despite the proven benefits of CBT-I, access to psychotherapy is still very poor worldwide. Barriers include the initial cost of treatment, the time commitment involved, the stigma of psychotherapy, lack of public awareness and grossly inadequate behavioural sleep therapists.<sup>51</sup> A review by Thomas et al found that the population of clinicians trained in either behavioural sleep medicine or CBT-I is grossly inadequate worldwide with low- and middle- income countries being most affected.<sup>51</sup> In their study, they noted that apart from USA and Canada, no other country had more than seven board certified behavioural medicine specialists.<sup>51</sup> As a way to reduce this deficit, the task force of the European Sleep Research Society and European Insomnia Network in 2018 proposed a simpler approach to the 'stepped care' proposed by Epsie et al.<sup>52</sup> In addition to Epsie and colleagues' model of leveraging on remote CBT-I to provide stepped care, the European task force proposed the establishment of a CBT-I academy to train healthcare professionals and standardize CBT-I treatment. As family physicians are likely to see majority of patients with comorbid insomnia, they proposed that family physicians have the basic CBT-I training and they be in a position to prescribe CBT-I treatment for their patients.<sup>52</sup> Where face-to-face CBT-I may not be feasible, remote CBT-I has been found to be equally efficacious.<sup>46,53,54</sup> It

has the advantage of reaching the approximately 3 billion internet users that would probably not have the luxury of meeting with a sleep therapist.<sup>46</sup> In addition, with the healthcare challenges currently being faced as an aftermath of COVID-19 pandemic, remote CBT-I is a perfect option for people with comorbid insomnia as it reduces hospital visits. Perhaps, remote CBT-I will be the solution to address the deficit in low- and middle- income countries. However, Ali et al posited that although remote CBT-I is promising in low- and middle- income countries, most of the internet- designed modules were developed in the Western world, they suggested that more culturally- suited modules be developed for low- and middle- income countries.<sup>55</sup> This should be the policy direction for these deprived regions of the world.

In conclusion, this systematic review found that there is paucity of information regarding effective treatment options for comorbid insomnia in low- and middle- income countries, especially in Africa. In the high- income countries, hypnotics (zolpidem and eszopiclone), herbal therapy of *Melissa officinalis* with *Nepeta menthoides* were found to be effective treatment options for comorbid insomnia. The authors also found face-to-face and remote cognitive behavioural therapy to be highly effective with moderate to large effect sizes.

#### Strengths and Limitations of the Study

The strength of this study is that it sought to provide a simple and effective treatment modality for comorbid insomnia as an entity. The risk of bias in this review is low, as all but three of the included RCTs had low to medium risk of bias.

The study might be prone to publication bias, as only published articles were reviewed. The authors were unable to carry out a meta- analysis due to the heterogeneity of the combinations of morbidities and interventions reviewed. Also, due to the heterogeneous nature of the review, the author did not consider the time effect of the individual studies.

#### Implications for Practice

There is an urgent need for more studies on comorbid insomnia in Low- and middle- income countries to further understand and meet the needs of the regions.

This study highlights treatment options for comorbid insomnia and has provided information interventions that offer additional benefits tailored to the needs and circumstances of practice.

Family physicians in resource- poor settings may require basic CBT-I training to offer such services to their patients.

#### Implications for Policy

There should be policy drive towards developing and providing culturally acceptable CBT-I modules to be accessed online.

The authors also advocate for more training of psychotherapists to offer services, especially at primary care level.

Finally, supportive services such as internet network will enhance stepped care, skill mix and collaboration with more advanced countries in the management of comorbid insomnia.

#### Conflict of Interest

We declare that we have no financial or personal

relationship(s) which may have inappropriately influenced us in writing this paper.

### Acknowledgements

The authors acknowledge the support from the University of Glasgow Library for the online resources. We also express our gratitude to the faculty and staff of Department of General Practice and Primary Care, University of Glasgow, Scotland for guidance and feedback.

### REFERENCES

1. Morin CM, Benca R. Chronic insomnia. *The Lancet* [Internet]. 2012;379(9821):1129–41. Available from: [http://dx.doi.org/10.1016/S0140-6736\(11\)60750-2](http://dx.doi.org/10.1016/S0140-6736(11)60750-2)
2. Morin CM, LeBlanc M, Daley M, Gregoire JP, Mérette C. Epidemiology of insomnia: Prevalence, self-help treatments, consultations, and determinants of help-seeking behaviors. *Sleep Medicine*. 2006;7(2):123–30.
3. Chung KF, Yeung WF, Ho FYY, Yung KP, Yu YM, Kwok CW. Cross-cultural and comparative epidemiology of insomnia: The Diagnostic and Statistical Manual (DSM), International Classification of Diseases (ICD) and International Classification of Sleep Disorders (ICSD). *Sleep Medicine*. 2015 Apr 1;16(4):477–82.
4. Roth T, Coulouvrat C, Hajak G, Lakoma MD, Sampson NA, Shahly V, et al. Prevalence and perceived health associated with insomnia based on DSM-IV-TR; international statistical classification of diseases and related health problems, tenth revision; and research diagnostic criteria/international classification of sleep disorders, second edition criteria: Results from the America insomnia survey. *Biological Psychiatry*. 2011 Mar 15;69(6):592–600.
5. Ohayon MM. Epidemiology of insomnia: What we know and what we still need to learn. Vol. 6, *Sleep Medicine Reviews*. W.B. Saunders Ltd; 2002. p. 97–111.
6. Sarsour K, Kalsekar A, Swindle R. The association between insomnia severity and healthcare and productivity costs in a health plan sample. *Sleep*. 2011;34(4): 443-450.6
7. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. In: *Journal of clinical epidemiology*. 2009. p. e1–34.
8. American Psychiatric Association. DSM-5 Task Force. Diagnostic and statistical manual of mental disorders : DSM-5. American Psychiatric Association; 2013. 947 p.
9. Clinical Handbook of Insomnia. Clinical Handbook of Insomnia. Springer International Publishing; 2017.
10. World Health Organization. The ICD-10 classification of mental and behavioural disorders : clinical descriptions and diagnostic guidelines. World Health Organization; 1992.
11. Cotroneo A, Gareri P, Lacava R, Cabodi S. Use of zolpidem in over 75-year-old patients with sleep disorders and comorbidities. *Archives of Gerontology and Geriatrics*. 2004;38(SUPPL.):93–6.
12. McCurry SM, von Korff M, Morin CM, Cunningham A, Pike KC, Thakral M, et al. Telephone interventions for co-morbid insomnia and osteoarthritis pain: The OsteoArthritis and Therapy for Sleep (OATS) randomized trial design. *Contemporary Clinical Trials*. 2019;87
13. Cheng P, Luik AI, Fellman-couture C, Peterson E, Joseph LM, Tallent G, et al. Demographic Groups: A Randomized Trial. 2020;49(3):491–500.
14. von Korff M, Vitiello M v., McCurry SM, Balderson BH, Moore AL, Baker LD, et al. Group interventions for co-morbid insomnia and osteoarthritis pain in primary care: The lifestyles cluster randomized trial design. *Contemporary Clinical Trials* [Internet]. 2012;33(4):759–68. Available from: <http://dx.doi.org/10.1016/j.cct.2012.03.010>
15. Smitherman TA, Walters AB, Davis RE, Ambrose CE, Roland M, Houle TT, et al. Randomized Controlled Pilot Trial of Behavioral Insomnia Treatment for Chronic Migraine with Comorbid Insomnia. *Headache: The Journal of Head and Face Pain*. 2016 Feb;56(2).
16. Jansson-Fröhmark M, Linton SJ, Flink IK, Granberg S, Danermark B, Norell-Clarke A. Cognitive-Behavioral Therapy for Insomnia Co-Morbid with Hearing Impairment: A Randomized Controlled Trial. *Journal of Clinical Psychology in Medical Settings*. 2012 Jun 10;19(2):224–34.
17. Pollack M, Kinrys G, Krystal A, McCall WV, Roth T, Schaefer K, et al. Eszopiclone coadministered with escitalopram in patients with insomnia and comorbid generalized anxiety disorder. *Archives of General Psychiatry*. 2008;65(5):551–62.
18. Casault L, Savard J, Ivers H, Savard MH. A randomized-controlled trial of an early minimal cognitive-behavioural therapy for insomnia comorbid with cancer. *Behaviour Research and Therapy*. 2015;67:45–54.
19. Manber R, Edinger JD, Gress JL, San Pedro-Salcedo MG, Kuo TF, Kalista T. Cognitive behavioral therapy for insomnia enhances depression outcome in patients with comorbid major depressive disorder and insomnia. *Sleep*. 2008;31(4):489–95.
20. Alessi CA, Fung CH, Dzierzewski JM, Fiorentino L, Stepnowsky C, Rodriguez Tapia JC, et al. Randomized controlled trial of an integrated approach to treating insomnia and improving the use of positive airway pressure therapy in veterans with comorbid insomnia disorder and obstructive sleep apnea. *Sleep*. 2021;44(4):1–13.
21. Tanaka M, Kusaga M, Nyamathi AM, Tanaka K. Effects of Brief Cognitive Behavioral Therapy for Insomnia on Improving Depression Among Community-Dwelling Older Adults: A Randomized Controlled Comparative Study. *Worldviews on Evidence-Based Nursing*. 2019;16(1):78–86
22. Baron KG, Corden M, Jin L, Mohr DC. Impact of psychotherapy on insomnia symptoms in patients with depression and multiple sclerosis. *Journal of Behavioral Medicine*. 2011 Apr;34(2):92–101.
23. Sweetman A, Lack L, Catcheside PG, Antic NA, Smith S, Li Chai-Coetzer C, et al. Cognitive and behavioral therapy for insomnia increases the use of continuous positive airway pressure therapy in obstructive sleep apnea participants with comorbid insomnia: A randomized clinical trial. *Sleep*. 2019;42(12):1–12.
24. Tang HY (Jean), McCurry SM, Pike KC, Riegel B, Vitiello M v. Open-loop Audio-Visual Stimulation for sleep promotion in older adults with comorbid insomnia and osteoarthritis pain: results of a pilot randomized controlled trial. *Sleep Medicine*. 2021 Jun 1;82:37–42.
25. Roth T, Price JM, Amato DA, Rubens RP, Roach JM, Schnitzer TJ. The effect of eszopiclone in patients with Insomnia and coexisting rheumatoid arthritis: A pilot study. *Primary Care Companion to the Journal of Clinical Psychiatry*. 2009;11(6):292–301.

26. Ranjbar M, Firoozabadi A, Salehi A, Ghorbanifar Z, Zarshenas MM, Sadeghniat-Haghghi K, et al. Effects of Herbal combination (*Melissa officinalis* L. and *Nepeta menthoides* Boiss. & Buhse) on insomnia severity, anxiety and depression in insomniacs: Randomized placebo controlled trial. *Integrative Medicine Research*. 2018;7(4):328–32.

27. Javaheri S, Reid M, Drerup M, Mehra R, Redline S. Reducing Coronary Heart Disease Risk Through Treatment of Insomnia Using Web-Based Cognitive Behavioral Therapy for Insomnia: A Methodological Approach. *Behavioral Sleep Medicine* [Internet]. 2020;18(3):334–44.

28. McCrae CS, Williams J, Roditi D, Anderson R, Mundt JM, Miller MB, et al. Cognitive behavioral treatments for insomnia and pain in adults with comorbid chronic insomnia and fibromyalgia: clinical outcomes from the SPIN randomized controlled trial. *Sleep*. 2019;42(3):1–15.

29. Sadler P, McLaren S, Klein B, Harvey J, Jenkins M. Cognitive behavior therapy for older adults with insomnia and depression: A randomized controlled trial in community mental health services. *Sleep*. 2018;41(8):1–12.

30. Norell-Clarke A, Jansson-Frömmark M, Tillfors M, Holländare F, Engström I. Group cognitive behavioural therapy for insomnia: Effects on sleep and depressive symptomatology in a sample with comorbidity. *Behaviour Research and Therapy*. 2015;74:80–93.

31. Hsu HM, Chou KR, Lin KC, Chen KY, Su SF, Chung MH. Effects of cognitive behavioral therapy in patients with depressive disorder and comorbid insomnia: A propensity score-matched outcome study. *Behaviour Research and Therapy* [Internet]. 2015;73:143–50.

32. Ashworth DK, Sletten TL, Junge M, Simpson K, Clarke D, Cunningham D, et al. A randomized controlled trial of cognitive behavioral therapy for insomnia: An effective treatment for comorbid insomnia and depression. *Journal of Counseling Psychology*. 2015;62(2).

33. Garland SN, Gehrman P, Barg FK, Xie SX, Mao JJ. CHOosing Options for Insomnia in Cancer Effectively (CHOICE): Design of a patient centered comparative effectiveness trial of acupuncture and cognitive behavior therapy for insomnia. *Contemporary Clinical Trials*. 2016;47:349–55.

34. Wagley JN, Rybarczyk B, Nay WT, Danish S, Lund HG. Effectiveness of Abbreviated CBT for Insomnia in Psychiatric Outpatients: Sleep and Depression Outcomes. *Journal of Clinical Psychology*. 2013;69(10): 1043–1055.

35. Vitiello M v., Rybarczyk B, von Korff M, Stepanski EJ. Cognitive behavioral therapy for insomnia improves sleep and decreases pain in older adults with co-morbid insomnia and osteoarthritis. *Journal of Clinical Sleep Medicine*. 2009;5(4):355–62.

36. Jansson-Frojmark M, Jacobson K. Cognitive behavioural therapy for insomnia for patients with co-morbid generalized anxiety disorder: An open trial on clinical outcomes and putative mechanisms. *Behavioural and Cognitive Psychotherapy*. 2021 Sep 1;49(5):540–55.

37. Latif ZEH, Saltyte Benth J, Solli KK, Opheim A, Kunoe N, Krajci P, et al. Anxiety, Depression, and Insomnia among Adults with Opioid Dependence Treated with Extended-Release Naltrexone vs Buprenorphine-Naloxone: A Randomized Clinical Trial and Follow-up Study. *JAMA Psychiatry*. 2019;76(2):127–34.

38. Redeker NS, Jeon S, Andrews L, Cline J, Jacoby D, Mohsenin V. Feasibility and efficacy of a self-management intervention for insomnia in stable heart failure. *Journal of Clinical Sleep Medicine*. 2015;11(10):1109–19.

39. Taylor HL, Rybarczyk BD, Nay W, Leszczyszyn D. Effectiveness of a CBT Intervention for Persistent Insomnia and Hypnotic Dependency in an Outpatient Psychiatry Clinic. *Journal of Clinical Psychology*. 2015 Jul 1;71(7):666–83.

40. Okajima I, Nakamura M, Nishida S, Usui A, Hayashida Kichi, Kanno M, et al. Cognitive behavioural therapy with behavioural analysis for pharmacological treatment-resistant chronic insomnia. *Psychiatry Research*. 2013;210(2):515–21.

41. Espie CA, Fleming L, Cassidy J, Samuel L, Taylor LM, White CA, et al. Randomized controlled clinical effectiveness trial of cognitive behavior therapy compared with treatment as usual for persistent insomnia in patients with cancer. *Journal of Clinical Oncology*. 2008;26(28):4651–8.

42. Savard J, Simard S, Ivers H, Morin CM. Randomized study on the efficacy of cognitive-behavioral therapy for insomnia secondary to breast cancer, part I: Sleep and psychological effects. *Journal of Clinical Oncology*. 2005;23(25):6083–96.

43. Linnet K, Gudmundsson LS, Birgisdottir FG, Sigurdsson EL, Johannsson M, Tomasdottir MO, et al. Multimorbidity and use of hypnotic and anxiolytic drugs: Cross-sectional and follow-up study in primary healthcare in Iceland. *BMC Family Practice* [Internet]. 2016;17(1):1–10.

44. Schutte-Rodin S, Broch L, Buysse D, Dorsey C, Sateia M, Schutte-Rodin SL. Summary recommendations Clinical Guideline for the Evaluation and Management of Chronic Insomnia in Adults. Vol. 4, *Journal of Clinical Sleep Medicine*. 2008.

45. Petit L, Azad N, Byszewski A, Sarazan FFA, Power B. Non-pharmacological management of primary and secondary insomnia among older people: Review of assessment tools and treatments. *Age and Ageing*. 2003;32(1):19–25.

46. Seyffert M, Lagisety P, Landgraf J, Chopra V, Pfeitter PN, et al. Internet-delivered cognitive behavioural therapy to treat insomnia: A systematic review and meta-analysis. *PLOS ONE*. 11(2): e0149139.

47. Lancee J, Van de bout J, Sorbi MJ, Van Straten A. Motivational support provided via email improves the effectiveness of internet-delivered self-help treatment for insomnia: a randomized trial. *Behav Res Ther*. 2013; 51(12): 797–805.

48. Schutte-Rodiz S, Broch L, Buysse D, Dorsey C, Sateia M. Clinical guidelines for the evaluation and management of chronic insomnia in adults. *J Clin Sleep Med*. 2008; 4(5): 487–504.

49. Mitchell MD, Gehrman P, Perlis M, Umscheid CA. Comparative effectiveness of cognitive behavioural therapy for insomnia: a systematic review. *BMC Fam Pract* 2012; 13:40.

50. Natsky AN, Vakalin A, Chai-Coetzer CL, Lack L, Mc Envoy RD, Levato N et al. Economic evaluation of cognitive behavioural therapy for insomnia (CBT-I) for improving health outcomes in adult populations: A systematic review. *Sleep Medicine Reviews*. 2020; 54: 101351.

51. Thomas A, Grader M, Nowaowski S, Nesom G, Corbitt C, Perlis ML. Where are the behavioural sleep medicine providers and where are they needed? A geographic

assessment. Behavioural Sleep Medicine. 2016; 14(6): 687-698

52. Epsie CA. "Stepped Care": a health technology solution for delivering cognitive behavioural therapy as first line insomnia treatment. Sleep 2009;32: 1549-58

53. Anderson G, Cuijpers P, Carlbring P, Piper H, Hedman E. Guided internet-based vs face- to- face cognitive behaviour therapy for psychiatric and somatic disorders: a systematic review and meta- analysis. World Psychiatry. 2014; 13(3): 288-295

54. Khurshid KA. Comorbid insomnia and psychiatric disorders: An update. Innov Clin Neurosci. 2018; 15(3-4): 28-32

55. Ali N, Ghazali SE, Subramaniam P, Said Z, Amit N. Implementation of online cognitive behavioural therapy for insomnia (CBT-I) in Malaysia: A narrative review. Jurnal Psikologi Malaysia. 2021; 35(1): 53-62